
Math 4200
Friday October 23
3.1 Infinite sum expressions for analytic functions and their derivatives; introduction to 
power series.

Announcements:   There's a list of Chapter 2.3-2.5 theorems at the end of today's notes, 
since we'll use them in Chapter 3.  We won't go over that list in class.  The very last 
page of notes is our next homework assignment.



Chapter 3:  Series representations for analytic functions.   Section 3.1:  Sequences and 
series of analytic functions.

Recall a key analysis theorem which we proved and used in our discussion of uniform 
limits of analytic functions last week, in which we used Morera's theorem to prove that 
uniform limits of analytic 
functions are analytic: 

Theorem  Let A , fn : A  continuous, n = 1, 2, 3 ...   If fn f  uniformly, then
f  is continuous.  (The same proof would've worked for A k, Fn : A p , 
Fn F  uniformly.)

Corollary  Let A , fn : A  continuous, n = 1, 2, 3 ...   If fn  is uniformly 
Cauchy, then there exist a continous limit function f : A , with fn f  uniformly.

Theorem A  (essentially from last week, via Morera's Theorem)  Let A  open
, fn : A  analytic, and fn  uniformly Cauchy.  Then  f  with fn f  uniformly, 
and f  is analytic.  



Theorem B  (includes statement about convergence of the derivatives, and notes that the 
convergence doesn't need to be uniform on all of A , just locally in A .)  Let A  open
, fn : A  analytic; fn z f z  z A ; fn f  uniformly on each closed 
disk D

_
z0 ; R A .  Then

(1)   f  is analytic on A

(2)   Furthermore, the derivatives fn z f z  and the convergence is uniform on 
each closed disk D

_
z0 ; R A .

proof:  (1) follows from Theorem A, applied to each subdisk D z0 ; R  with 
D
_

z0 ; R A .

For (2), Let D
_

z0 ; R A , pick 0 so that also D
_

z0 ; R A  as well 
(positive distance lemma).  Then for z z0 R  use the Cauchy integral formulas for 
derivatives on the circle of radius R  and compare:

fn z = 1
2  i

z0 = R

fn
z 2 d

f z = 1
2  i

z0 = R

f

z 2 d



Recall from analysis the following correspondence between sequences fn z   and 

series 
j = 1

gj z :

    Each series 
j = 1

gj z corresponds a sequence of partial sums Sn z ,  with 

Sn z  
j = 1

n

gj z .  

    Each sequence fn z  can be rewritten as an infinite series 
j = 1

gj z with partial 

sums Sn = fn   if we define

g1 z f1 z
g2 z = f2 z f1 z

:
gn z = fn z fn 1 z .

Def  The series  
j = 1

gj z  converges uniformly on the domain A  (alternately at a point 

z A ) if and only if the sequence of partial sums Sn z = 
j = 1

n

gj z  converges 

uniformly on A  (alternately at a point z A ). 



Theorem B  (recopied from previous page.)  Let A  open, fn : A  analytic; 
fn z f z  z A ; fn f  uniformly on each closed disk D

_
z0 ; R A .  

Then

(1)   f  is analytic on A

(2)   Furthermore, the derivatives fn z f z  and the convergence is uniform on 
each closed disk D

_
z0 ; R A .

Theorem B′  (Theorem B restated for series):   Let A  open, gn : A  analytic; 

Sn z = 
j = 1

n

gj z f z =
j = 1

gj z  z A; Sn f  uniformly on each closed disk 

D
_

z0 ; R A.  Then

(1)   f z =
j = 1

gj z  is analytic on A

(2)   d
dz f z = d

dz j = 1
gj z =

j = 1
gj z .  Furthermore, the convergence of 

j = 1
gj z  

to f z  is uniform on each closed disk D
_

z0 ; R A .  (In other words, we can 
differentiate the series term by term.)



Def  The series  
j = 1

aj converges absolutely  if and only if  
j = 1

aj   .

Theorem:  Absolute convergence implies convergence .
proof:

There is a useful test for uniform convergence of a series of functions on a domain A  - 
namely a uniform absolute convergence test.  It's called the Weierstrass M test (maybe 
M  is chosen because of the word Modulus), and it's usually covered in Math 3210-3220 
in the real-variables context:

Theorem C  (Weierstrass M test)  Let gn z , gn : A .  If 
n   Mn  such that

gn z Mn  z A
and if

n = 1
Mn 

then  
j = 1

gj z  converges uniformly on A .  (And in this case, if each gn  is analytic, so is

g z =
j = 1

gj z .)  

proof:



Examples  

(1)   Last week we discussed the Zeta function z =
n = 1

1
nz .  The Weierestrasse M  

test holds for each half plane with  Re z 1 , for each positive , so z  is 
analytic for Re z 1.

(2)  Show that 

n = 0
zn  

Use the Weierstrass M test to show this series converges uniformly on D 0, r  for any 
r 1, so converges to an analytic function in all of D 0; 1 .  What analytic function is 
this?  (By the way, this is the most important power series in Complex Analysis.  :-) )

(3)  Show that the series 
n = 0

zn  diverges for all z 1.



(4)  Show that the series 

f z =
n = 0

zn

n!  = 1 z z2

2!  ....

converges uniformly for z R , so converges to an analytic function  z.   Then use 
the term by term differentiation theorem to show that f z = f z  and use this and 
f 0 = 1 to identify f z .



Appendix:  Key results of  Chapter 2.3-2.5.  We'll be using many of these in Chapter 3.

Cauchy's Theorem (Deformation theorem version, section 2.4).  Let f : A  analytic. 
a)  Let : a, b A  a (piecewise C1) closed contour.  If  is homotopic to a point in 
A  as closed curves, then

 f z  dz  = 0.

b)  If 1, 2  are homotopic with fixed endpoints in A , then

1

 f z  dz =
2

 f z  dz 

(proofs used the homotopy lemma, which made use of the local antidifferentiation 
theorem, which used Goursat's rectangle lemma.)

Index  The signed number of times a closed contour  winds around z0  can be counted 
with the index formula

I  ; z0 = 1
2  i

 1
z z0

 dz 

(We showed that for any continuous closed contour not containing z0  there's a unique 
way to measure how the polar angle from z0  to t  changes as one traverses , and 
dividing that total change by 2  is the definition of the index.  We showed that for a 
piecewise C1  contour, the contour integral expression above computes the same integer.)

Cauchy Integral Formula  Let f : A  analytic.  Let  be a closed contour homotopic 
to a point in A .  Then for z ,

f z  I  ; z = 1
2  i

 
f

z
 d .

(We applied the deformation theorem and local antiderivative theorem with the 
modified rectangle lemma,  for the auxillary function

G

f f z
z

z

f z = z

)



Cauchy Integral Formula for derivatives  Let f : A  analytic.  Then f  is infinitely 
differentiable.  And, for   be a closed contour homotopic to a point in A  and z ,

f z  I  ; z = 1
2  i

 
f

z 2  d

f n z  I  ; z = n!
2  i

 
f

z n 1  d

(We used the fact that if integrands of contour integrals are converging uniformly, then 
so are the contour integrals, applied to the difference quotients for f z ; and induction.
)

Estimates:  In case  is the index one circle of radius R  centered at z,

f n z n!
Rn  max f  s.t. z = R .

Corollaries  Liouville's Theorem:  Bounded entire functions are constant.

                    Theorem  Entire functions with moduli that that are bounded by C z n  
with n , for z  large, are polynomials of degree at most n.

                   Fundamental Theorem of Algebra:  Every polynomial 
p z = zn  an 1zn 1  ...  a1 z a0  factors as 

p z = z 1 z 2 .... z n  



Morera's Theorem  Let f : A  continuous and supposed the rectangle lemma holds 
for every closed rectangle R A ,

 A
f z  dz = 0.

Then f  is analytic in A .  

(The rectangle lemma means f  has local antiderivatives F , but these F  are twice 
complex differentiable, so f  is complex differentiable.)

Key corollary for Chapter 3:  Let fn , fn : A  analytic, fn f  uniformly on A .  
Then f  is analytic on A .  

(We proved that uniform limits of continuous functions are continuous, so that we can 
compute contour integrals for the limit function f .  And since each fn  is analytic, and 

fn f  uniformly, the rectangle lemma hypothesis of Morera's Theorem is satisfied 
by f , so f  is analytic.)



Mean value properties  
Let  f : A  analytic, D

_
z0; R A .  Then the value of f  at z0  is the average of the 

values of f  on the concentric circle of radius R  about z0 :

f z0 = 1
2 

0

2 

f z0 R ei   d

Let  u : A  harmonic and C2 , D
_

z0; R A .  Then the value of u at x0, y0  is the
average of the values of u on the concentric circle of radius R  about z0 :

u x0, y0 = 1
2 

0

2 

u x0 Rcos , y0 R sin  d

Theorem  (Maximum modulus principle).  Let A  be an open, connected, bounded 
set.  Let f : A  be analytic, f : A

_
 continuous.  Then

maxz A
_ f z   =  maxz  A f z M .

Furthermore if z0 A  with f z0 = M , then f  is a constant function on A .

Theorem  (Maximum and minimum principle for harmonic functions).  Let A 2  be 
an open, connected, bounded set.  Let u : A  be harmonic and C2 , u : A

_
 

continuous.  Then

max x, y A
_ u x, y  =  max x, y  A u x, y M ,

min x, y A
_ u x, y  =  min x, y  A u x, y m,

Furthermore if x0, y0 A  with u x0, y0 = M  or u x0, y0 = m, then u is a 
constant function on A .



Theorem  Let f : D
_

0; 1 D
_

0; 1 be a conformal diffeomorphism of the closed unit 
disk (i.e. f  and f 1  are each conformal).  Then recording 

f 0 = z0 ,
f  must be a composition

f z = gz
0

ei  z

for some choice of  and the specific Mobius transformations gz
0

z  

gz
0

z =
z0  z

1 z0
_

 z .

Theorem  (Poisson integral formula for the unit disk)  Let 
u C2 D 0; 1  C D

_
0; 1 , and let u be harmonic in D 0; 1 .  Then the Poisson 

integral formula recovers the values of u inside the disk, from the boundary values.  It 
may be expressed equivalently in complex form or real form.  For 
z0 = x0  i y0 = r ei  with z0 1,

u z0 = 1
2 

0

2 
1 z0

2

z0 ei 2  u ei d

u r cos , r sin = 1
2 

0

1 r2

r2 2 r cos 1
u cos , sin  d



Math 4200-001
Week 9-10 concepts and homework

3.1-3.2
Due Friday October 30 at 11:59 p.m.

3.1    4, 12, 13, 14

3.2     2b, 3a, 4 (just for 1 z ), 5c (first four non-zero terms) 7, 13, 14, 18, 19, 20


